Home    Resource Store    Past Issues    Buyers' Guide    Career Center    Subscriptions    Advertising    E-Newsletter    Contact

More Quality Fabric Of The Month

Cool To The Core
November 24, 2015

Future Denim
September 22, 2015

Roofing Performance Gets A Lift
July 21, 2015

Warmth & Loft Without Feathers
May 19, 2015

IR Performance In A Softer Hand
March 16, 2015

Textile World Photo Galleries
November/December 2015 November/December 2015

View Issue  |

Subscribe Now  |


Vietnam Fashion, Fabric & Garment Machinery Expo
11/25/2015 - 11/27/2015

From Farm To Fabric: The Many Faces Of Cotton - The 74th Plenary Meeting of the International Cotton Advisory Committee (ICAC)
12/06/2015 - 12/11/2015

Capstone Course On Nonwoven Product Development
12/07/2015 - 12/11/2015

- more events -

- submit your event -

Printer Friendly
Full Site
Quality Fabric Of The Month

FR From Nature, Layer By Layer

Intumescent and nanobrick antiflammable layered nanocoatings made using chitosan and other renewable materials provide FR protection for cotton and other textiles and foam.

Janet Rodie, Managing Editor

Researchers at Texas A&M University, College Station, Texas, are developing eco-friendly intumescent and clay-based nanocoatings that may one day be used to provide flame resistance (FR) to cotton garments and other textiles and polyurethane foam. The coatings, made using chitosan and other renewable materials, have potential applications in such areas as childrenswear, military and protective apparel, mattresses and home furnishings, and aircraft components.

Jaime C. Grunlan, Ph.D., an associate professor in Texas A&M's Department of Mechanical Engineering and director of the research, had been working on a layer-by-layer assembly technique using a water-based solution to create clay-based nanobrick coatings for gas barrier films and got the idea to use them in FR applications, first trying them on foam. With input from the National Institute of Standards and Technology, which is partially funding the research, it was found that the coated foam didn't break down, and the weight gain from the coating was less than is typical with other FR coatings. The coating penetrates the foam, significantly diminishing offgassing and reducing the heat release rate by half. "The outer surface chars, but the inside is undamaged," Grunlan said.



Scanning electron micrographs show the intumescent coating on uncharred fabric (top) and swollen protective foam created on the charred portion (bottom).

Meanwhile, Grunlan had been observing intumescent, foamy coatings on steel structural supports. "The coating, which contains phosphorus and nitrogen polymers, swells through the foaming process," he explained. "The phosphorus attacks the nitrogen, which offgasses, creating bubbles that provide a thermal shield around the object."

He decided to try a similar coating on cotton. "It totally worked," he said. Only the surface in direct contact with flame was charred, and the swollen coating protected the fabric structure.

To make a biodegradable coating, Grunlan and his research team, including Galina Laufer, Ph.D., replaced man-made polymers with chitosan to provide the nitrogen component and phytic acid to provide the phosphorus. The water-based coating can be crosslinked to improve wash durability, Grunlan said, pointing out that the U.S. Department of Agriculture has found that the FR performance is unchanged after 10 washes conducted using an ASTM test method. "I'm very confident we can show the same performance after 20 to 30 washes," he added.

In current versions, the coating, though only 500 nanometers thick, does stiffen the fabric, making a very soft cotton more like canvas, such as would be suitable for a firefighter's jacket. However, Grunlan said his team is working on recipes that would provide a softer hand and would be suitable for children's sleepwear or other clothing.

Grunlan also has applied the coating to nylon/cotton FR and polyester fabrics. "The coating will prevent melt dripping, and a little intrinsic FR fiber in the fabric dramatically reduces the number of coating layers needed," he said, noting that the coating will enhance a fabric's own FR behavior.


Left: In a vertical flame test, the coated cotton fabric chars only where the flame touches it.

CONTACTS: For more information about the antiflammable nanocoating research at Texas A&M, contact Jaime C. Grunlan +979-845-3027; jgrunlan@tamu.edu.

November/December 2012